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We derive a system of equations for problems in drying, sorption, and also noniso- 
thermal filtration when there is incomplete saturation in undeformed porous; media. 

In theoretical investigations of transfer processes in porous media there is no single 
phenomenological process that is always used [1-3]. In the theories of drying, sorption, 
and two-phase filtration the divergences are of a fundamental nature, although insofar as 
their meaning goes, they all must reflect simultaneous heat and mass exchange in porous me- 
dia during phase transformations. 

In order to describe the above-mentioned processes, we must make use of the laws of con- 
servation of mass and energy. The transfer equations obtained from the conservation laws 
are not closed. To close them, we must determine the intensity of the mass exchange between 
the phases, the additional specific heat of sorption (or desorption), the transfer poten- 
tials of the liquid and vapor, and the variation of the liquid pressure Pl with the moisture 
content W and the temperature T, and we must clarify the physical mechanism of the heat and 
mass transfer and obtain a relation for calculating it. 

In constructing a physical model, we shall consider only undeformed porous media with- 
out structural changes. We shall assume that the shrinkage of the specimen and the change 
in porosity during the drying process are insignificant and that the permeability coeffi- 
cients of the liquid and the vapor are equal. 

In the porous medium the boundary between the two phases is subdivided into a number of 
individual segments with different curvatures. Applying the mass-exchange analog of the 
Fourier criterion, we see that local thermodynamic equilibrium (LTE) in pores with cylindri- 
cal, spherical, or plane geometry occurs after arelaxation timeof ~2 I0-~~ I0 -~~ sec fora 
pore radius of about 10 -7 m, which is, as a rule, much less than the time required for the 
macroprocess of drying, and therefore the LTE hypothesis is valid in the case of "intensive" 
drying processes as well. Under conditions of dynamic equilibrium between the liquid and 
the vapor, the chemical potentials of the phases must be equal: 

g t ( P t ,  T ) =  ~v(Pv, T), (I) 

and the liquid pressure is determined by the vapor pressure according to Kelvin's formula 
[4]: 

v~ P~ (2) 

E q u a t i o n  (2) was e x p e r i m e n t a l l y  v e r i f i e d  in  [4 ,  5 ] ,  in  which  t h e  l i m i t s  o f  t h e  a p p l i c a b i l i t y  
Ofo(2)  a r e  a l s o  i n d i c a t e d .  The c a s e  in  which  t h e  t h i c k n e s s  o f  t h e  l i q u i d  f i l m  :is l e s s  t han  
10 A w i l l  n o t  be c o n s i d e r e d  h e r e ;  we s h a l l  assume t h a t  in  t h i s  c a s e  t h e  body i s  " d r y . "  

U s u a l l y  we know f rom e x p e r i m e n t s  t h e  s o r p t i o n  ( d e s o r p t i o n )  i s o t h e r m s  W = f ( %  T) .  
Knowing P s ( T ) ,  we can r e p r e s e n t  t h e  i s o t h e r m s  in  t h e  form 

v/=  f (G, T) (3) 

where Pv is the intraporous vapor pressure. From (3) we can express Pv with the aid of the 
inverse function 

(4) 
P v =  F(W, T). 
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Consequently, taking account of (4), we can write Eq. (3) in the form 

P.~ P~(T)  + R T  In F(W, T) 
= (5) v s P,~ (T) 

Thus, formula (5) gives us the variation of the liquid pressure as a function of the 
moisture content and temperature in explicit form. Unlike Kelvin's formula (2), it takes 
account of the specific physicochemical properties of the porous specimen. 

The experimental variation of the sorption isotherms as functions of temperature is 
such that as T increases, there is also an increase in the liquid pressure, which leads to a 
heat and moisture transfer effect. 

The upper limit of applicability of (5) is determined by the difficulties in carrying 
out the experiments for obtaining the isotherms as ~-+1 These difficulties led to the as- 
sertion that the macropores are not filled during sorption [i]. However, experiments [5] 
with special thermostating systems show that as q>-+1 , the macropores are also filled, and 
therefore (5) is valid all the way up to the point at which the pores are completely satu- 
rated with the liquid. 

If the LTE hypothesis is satisfied when the phases in a nonequilibrium process go 
through a number of equilibrium states, we have [2-5] 

T] 
Differentiating the equilibrium conditions (i) with respect to temperature, we obtain 

the well-known Clapeyron--Clausius relation for the specific heat of sorption 

RT2 ( O In P~ 
re -- v.s , OT . w (7) 

or, using (3), (4), we can represent (7) in the form 
RT" ( O ln F (W, T) ) 

r~ = -----7- OT " (8) v:s v/ 

Thus, we must know the sorption isotherms in order to determine the intensity of mass 
exchange, i.e., the variation of the capillary pressure of the liquid as a function of the 
moisture content and the specific heat of sorption. 

In order to explain the jump in moisture content at the boundary at which two porous 
bodies touch, Lykov [I] introduced the concept of the transfer potential Om of moisture in 
porous bodies. 

In Vol'fkovich's experimental study [5] it was established that in the equilibrium 
state there is equality between the capillary pressures pk = Pv- P~ in the pores throughout 
the volume of the system for all porous bodies (including colloidal bodies), i.e., the vapor 
pressure and the liquid pressure can be regarded as potentials. It should be noted that al- 
though the chemical potentials of the phases are equal in the equilibrium state, they are in- 
dependent functions, since the functional relations between the variables are different in 
the different phases, and therefore the number of equations depends on the number of phases 
[3]. We write out the laws of filtration for each of the phases in the form: 

u , v  = - -  

% 
(9) 

= _  (o: 0 vP. , 

where fv(0v), f/(0/) are the relative phase permeabilities. We write D/(0/) - kfl(O1)/ql, 

where f/(0 Z) is a monotone decreasing function of the saturation e I of the liquid phase, and 
at some limiting value 0~ we have D/(O/) --- 0. When e I < e~, the liquid passes from the cap- 
illary-connected mobile w into the immobile adsorption-bound state [3]. We can deter- 
mine 8~ by the method of nuclear magnetic resonance (NMR). The NMR method can also be used 
for determining the self-diffusion coefficient of the liquid in the porous body, which is re- 
lated to D/(Ol), for example, by Darken's equation [6]. 

For the one-dimensional case the equations of motion of the vapor and the liquid have 
the form 
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Fig. i. Field of vapor pressures (a), moisture-content val- 
ues (b), and temperatures (c) for: i) Fol = 0.17; 2) Fol = 
0.34; 3) Fo3 = 0.51; 4) Fo4 = 0.68; 5) Fos = 0.85; 6) F06 = 
1.02; 7) Fo7 = 1.19; 8) Fos = 1.36; 9) FO~ = 1.53. 

m O~ Ox qv Ox , (10) 

m O (p:q.0;~.)a~ ' = -~xa( k9:~/q(O:')~l., oP:~') - I ' a x  (11) 

To c l o s e  t h e  sy s t em o f  e q u a t i o n s  ( 1 0 ) ,  (11), t h e  t h e o r y  o f  f i l t r a t i o n  u s e s  t h e  u n i v e r s a l  
f u n c t i o n  o f  i n s t a n t a n e o u s  s a t u r a t i o n  [3] : 

p T - -  P~ = ~ cos a (re~k) d (0.~), (12) 

where  a i s  t h e  w e t t i n g  a n g l e .  R e p r e s e n t a t i o n  (12) was f i r s t  p r o p o s e d  in  [ 7 ] ,  and J(0.~) i s  
c a l l e d  t h e  L e v e r e t t  f u n c t i o n .  The s u r f a c e  t e n s i o n  o and t h e  bounda ry  a n g l e  o f  w e t t i n g  a a r e  
complicated functions of temperature, and for real media they are unknown; therefore such 
problems as capillary impregnation in the temperature field are usually omitted from consid- 
eration. For the closure of Eqs. (i0), (ii) we shall use the relation (5), based on Kelvin's 
formula and sorption isotherms. 

In investigating slow flows, we may disregard the terms that take account of the varia- 
tion in pressure and in the specific volume of the gas, and also of the convective transfer 
of energy; the energy equation is greatly simplified, and in the one-dimensional case it has 

the form 

l(1--m)cptPt + m(OvPvCl~v + O~ps Om Ox ~ + LI--mP~'-~163 - -  = - -  0c (13) 

Expression (13) differs from the equations obtained in [1-3] cheifly in being closed. 
For calculating the specific heat of phase transition we can use the relation (9), and for 
determining the intensity of mass exchange we can use the relation (6). 

The system consisting of Eqs. (i0), (ii), (13) and the closing relations (1)-(9) can be 
used in problems involving drying, sorption, and filtration with incomplete saturation. 

As an example, let us consider the process of drying of a cylindrical specimen of K-120 
electrocellulose paper with a radius r = 0.0! m. At the initial instant of time Wo = 6%, 
Pvo = 1052 Pa, and To = 293~ The specimen is placed in a vacuum chamber with a vapor pres- 
sure of Ps = 13.1 Pa. All the parameters of the problem are close to the conditions of the 
experiment conducted in [8]. The surface of the specimen is acted upon by a heat flux re- 
sulting from radiant heat exchange between the external surface of the coil and the radiator 
at a temperature Tra d = 420~ We must calculate the nonstationary fields of moisture con- 
tent, vapor pressure, and temperature. The thermophysical and transfer properties of K-120 
paper were determined in [8]. Experimental measurements of the coefficient of diffusion of 
the liquid kgzfz(0Z)/~ ~ (which may perhaps better be called the generalized coefficient of 
permeability) are not available, and therefore for our estimates we shall use permeability 
values obtained on the basis of the vapor; then kpz/r, l = 10-*Ssec. To calculate the relative 
phase permeability, we shall use, with certain assumptions, the well-known Aver'yanov for- 

mula 

: ( - t , ' , (14) 
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Fig. 2. Average moisture con- 
tent as a function of the Fourier 
method. 

The limiting saturation value 0 5 for the paper was measured b,y the NMR method, and the corre- 
sponding value of the limiting moisture content was W* = mp187. = 4%. Numerical calculations 

were carried out for the paper with a desorption isotherm of the form [8]: 

W = A exp (--  ~T) ([}Pv)(--• (15)  

where  A = 367935,  a = 0 . 0 3 3 ,  B = 0 . 0 0 7 6 ,  X = 0 . 9 6 ,  y = 0 . 0 0 5 .  The s p e c i f i c  h e a t  o f  p h a s e  
transfer of the moisture, according to (7) and taking account of (15), is: 

/~T-' i cz - -  y In ~ in (W/A) -6 0r -~ • - -  y T [ (16) 

- TT§ + ( -  + j'  
The anisotropic liquid pressure can be calculated according tO the relation (5); for 

isotherms of the form (15) it can be represented as 

p.g = RTW [ ln(W/A) + aT ( T ) ]  
in , (17) 

where C is a constant (PB = 105(T/373)xs, C = lOS). 

The boundary conditions are: 

T = 0 ,  T(r, 0 ) = T o ;  Pv(r, 0 ) = P r o ;  P~.(r, 0 ) =  Pr , 

r = O, ~ -- OPt, I = 0 ;  
Or-- r=o -- Or Ir=o 

r : 1, Pv(1, T) = Pc; P~O = P~(TD 

-•r/r=o == O; 

RTc ( T ) l n (  Pc / 

(18) 

(19)  

(20)  

(21) 
OT 4 4 

=. 0%* (Tra d -  T~ (1, ~)). 
Or ~=l 

For the solution of the system of equations, we used the combined Euler--Lagrange (GEL) 
method, which was used originally to solve nonstationary hydrodynamic problems involving a 
moving common liquid boundary [9]. 

To solve the energy and motion equations for the vapor, we used numerical schemes in 
the Euler representation, and for the equation of motion of the liquid, when deformation of 
the physical system may take place as a result of capillary overflow, we used Lagrangian var- 
iables. The system of equations was solved by the method of successive approximations, and 
therefore the iterative cycles were organized for all equations of the system. 

The calculations showed that for Fo = 1.56 the drying process comes to an end and the 
parameters are close to the equilibrium values, and therefore we obtained on a graph-plotter 
graphs up to Fo = 1.56 for 9 instants of time (k = i, 2, ..., 9, AFo k =kAFo, where Fo = 
1.56/9), in order to follow the evolution of the local values of the parameters. In the 
graphs r = 0 corresponds to a point at a distance of 0.5h from the axis of symmetry, where 
h is the magnitude of the step, space (h = 1/20), r = 1 is a point at a distance of 0.5h 
from the surface. 
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Figure la shows tlmt at the initial instant of time (curves 1-4) there is a wave motion 
of the vapor, and the front of maximum pressure is displaced into the interior of the speci- 
men and reaches a maximum value on the axis of symmetry. Figure ib shows the fields of mois- 
ture-content values. As a result of processes which may be characterized as "heat and mois- 
ture conduction," the moisture content may increase somewhat in the central, "cold" parts of 
the specimen. 

Figures ic and 2 show the temperature fields and the variation of the average moisture 
content of the material as a function of time. Comparison of the results of the calcula- 
tions with the experimental data of [8] shows that the error in the determination of the var- 
iation of the average moisture content as a function of time up to moisture content values 
of W = 1.5% is no more than 15%. However, at the stage of the drying of the K-120 paper to 
W = 0.5%, the error increases to 30-40%, while the "theoretical" drying process comes to an 
end more rapidly. The divergence in the heating curves is 25-30%, and the heating time of 
the specimen, according to the calculations, is longer. The curves describing the variation 
of the local vapor pressure with time are in general difficult to compare, since it proved 
impossible to determine the time at which the pressure passed through the value of maximum 
pressure at the center of the specimen. In [8] the small vapor pressure values were mea- 
sured with ordinary manometers with a large excursion and a free volume connected with tubes 
to medical needles, which could have led to significant distortions of the vapor pressure 
fields; consequently we shall not compare the calculations to the experimental data. How- 
ever, it should be noted that there was good qualitative agreement between the theory and 
the experimental data. The vapor-pressure peaks were observed at the same instants of time, 
and the increase in the vapor pressure and its relaxation took place in a similar manner. 

NOTATION 

k, permeability, m3; m, porosity, 0i, saturation of porous medium with vapor (v) and 
liquid (~); o*, Stefan--Boltzmann constant; c*, emissivity; v~, molar volume of liquid, m3/ 
mole; v~, molar mass of liquid, kg/mole; R, universal gas constant; pT, density of dry por- 
ous specimen; W, moisture content, kg/kg. 
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